
TEMPORALFC: A Temporal Fact Checking approach
over Knowledge Graphs

Umair Qudus(�)1 , Michael Röder1 , Sabrina Kirrane2 , and Axel-Cyrille Ngonga
Ngomo1

1 DICE Group, Department of Computer Science,
Universität Paderborn, Germany

{umair.qudus,michael.roeder,axel.ngonga}@uni-paderborn.de
https://dice-research.org

2 Institute for Information Systems and New Media,
Vienna University of Economics and Business, Vienna, Austria

sabrina.kirrane@wu.ac.at

Abstract. Verifying assertions is an essential part of creating and maintaining
knowledge graphs. Most often, this task cannot be carried out manually due
to the sheer size of modern knowledge graphs. Hence, automatic fact-checking
approaches have been proposed over the last decade. These approaches aim to
compute automatically whether a given assertion is correct or incorrect. However,
most fact-checking approaches are binary classifiers that fail to consider the
volatility of some assertions, i.e., the fact that such assertions are only valid at
certain times or for specific time intervals. Moreover, the few approaches able to
predict when an assertion was valid (i.e., time-point prediction approaches) rely on
manual feature engineering. This paper presents TEMPORALFC, a temporal fact-
checking approach that uses multiple sources of background knowledge to assess
the veracity and temporal validity of a given assertion. We evaluate TEMPORALFC
on two datasets and compare it to the state of the art in fact-checking and time-
point prediction. Our results suggest that TEMPORALFC outperforms the state
of the art on the fact-checking task by 0.13 to 0.15 in terms of Area Under the
Receiver Operating Characteristic curve and on the time-point prediction task by
0.25 to 0.27 in terms of Mean Reciprocal Rank. Our code is open-source and can
be found at https://github.com/dice-group/TemporalFC.

Keywords: temporal fact checking · ensemble learning · transfer learning · time-point
prediction · temporal knowledge graphs.

1 Introduction

The transition from an industrial civilization to an information and knowledge society
during the last few decades has been fast-paced [12]. The adoption of the World Wide
Web is largely to thank for this transformation. A similar uptake of knowledge graphs for
the creation and management of knowledge has occurred in many communities around
the world [19]. This uptake most certainly holds in the semantic web community, where
knowledge is commonly represented in the form of RDF knowledge graphs (KGs). The

https://orcid.org/0000-0001-6714-8729
https://orcid.org/0000-0002-8609-8277
https://orcid.org/0000-0002-6955-7718
https://orcid.org/0000-0001-7112-3516
https://dice-research.org
https://github.com/dice-group/TemporalFC


2 Qudus et al.

2018^^xs:gYear

:runningContractSigned

2023^^xs:gYear

:runningContractSigned

2002^^xs:gYear

:runningContractSigned

2009^^xs:gYear

:runningContractSigned

:Ronaldo :Juventus

:Al_Nassr:SCP

:Real Madrid

Fig. 1: A temporal knowledge graph excerpt from a large knowledge graph. The dotted line shows
the time point for a given fact (in granularity of a year). Filled black lines are edges (aka predicates)
with labels, and the rest are nodes of different RDF classes, which include Person, City, County,
Award, and University.

Linked Open Data Stats3, which already holds over 9,000 KGs with more than 149
billion assertions and 3 billion entities, further supports the growing adoption of the
Resource Description Framework (RDF) at Web scale [13]. WikiData [34], DBpedia [2],
Knowledge Vault [11], and YAGO [49] are examples of large-scale KGs that include
billions of assertions and describe millions of entities. They are used as background
information in an increasing number of applications, such as in-flight entertainment [35],
autonomous chatbots [1], and healthcare [27]. However, current KGs may not be fully
correct. for instance, the literature assumes that roughly 20% of DBpedia’s claims are
erroneous [19,44]. To encourage the further adoption of KGs on a large scale on the Web,
approaches that can automatically forecast the truthfulness of the assertions included in
KGs must be developed. Such methods are what we refer to as fact-checking approaches.

There are several fact-checking approaches designed to verify assertions in KGs and
compute their veracity scores [51,19,52,50,23]. However, assertions can be volatile and
the majority of existing approaches do not take any temporal aspects into account. For
example, Figure 1, which we use as a running example in this paper, shows that the as-
sertion (:Ronaldo, :runningContractSigned, :SCP) is not accurate without
information about the year since :Ronaldo also signed contracts with other teams at
later points in time4. Ergo, temporal information is critical for validating volatile asser-
tions. However, very little attention has been given to the temporal aspect of KGs when
dealing with the task at hand. Temporal-DeFacto [19] is at the time of writing the only
temporal fact-checking method that looks at this aspect of KGs along with their verifica-

3 http://lodstats.aksw.org/
4 From here on, we work with IRIs. The prefixes for these IRIs that we use are “xs” and
“:”. The xmlns schema is identified by the URI-Reference http://www.w3.org/2001/
XMLSchema/# and is associated with the prefix ’xs’. Furthermore, we use “:” prefix for
literals.

http://lodstats.aksw.org/
http://www.w3.org/2001/XMLSchema/#
http://www.w3.org/2001/XMLSchema/#
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tion. However, Temporal-DeFacto relies on tedious manual feature engineering [19,51],
which has been shown to be sub-optimal w.r.t. their prediction performance by represen-
tation learning approaches [4]. The approaches T-TRANSE [30], T-COMPLEX [6] and
T-DYHE [36] from the knowledge base completion domain concentrate on time-point
prediction as well. These approaches focus on the time prediction task and encounter
limitations with respect to their Mean Reciprocal Rank (MRR) scores as well as their
scalability. Furthermore, they do not consider the fact-checking aspect [36].

We alleviate the limitations of the aforementioned approaches by proposing a neural
network-based approach that utilizes transfer learning (i.e., it uses pre-trained embed-
dings created from a Temporal Knowledge Graph TKG) for fact-checking and time-point
prediction tasks. Since temporal information is also critical, our system predicts the year
in which an assertion was true, along with its veracity score. For example, if an assertion
(:Ronaldo, :runningContractSigned, :SCP) is given as input, our system not
only validates the statement, it also predicts the year in which the assertion was true.

The main contributions of our work are as follows:

– We employ transfer learning to repurpose pre-trained TKG embeddings for the
fact-checking and time-point prediction tasks.

– We present an open-source neural network-based approach for detecting the temporal
scope of assertions.

– We evaluate our approach on two datasets—DBpedia124K and Yago3K—and com-
pare it to the state of the art of time-point prediction and temporal fact-checking
tasks. Our approach outperforms other approaches in the time-point prediction task
by 0.25 and 0.27 MRR and temporal fact-checking task by 0.13 to 0.15 in terms of
Area Under the Receiver Operating Characteristic curve (AUROC).

The rest of this paper is organized as follows. The notations necessary to comprehend
the remainder of the paper are introduced in Section 2. In Section 3, we provide an
overview of the related work. We present our proposed approach in Section 4. After that,
Section 5 describes the experimental setup. The results are discussed in Section 6. In
Section 7, we conclude and discuss potential future work.

2 Preliminaries

Fact checking and related terms have a variety of definitions that come from dif-
ferent fields, such as journalism [25,32,26], natural language processing [39], and
KGs [53,29,45]. We adopt the definition of fact-checking for KGs provided in [51]
as follows:

Definition 1 (Fact Checking). Fact checking implies calculating the likelihood that
an assertion is true or false in the presence of a reference KG G, and/or a reference
corpus [51].

We utilize RDF TKGs throughout the entirety of this work.

Definition 2 (Temporal Knowledge Graph (TKG)). A TKG T G is a collection of RDF
quadruples T G ⊆ (E∪B)×P×(E∪B∪L)×T, where each quadruple (s,p,o,t)∈ T G
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Table 1: Scoring functions of different embedding-based approaches used in this paper. ∗ stands
for the Dihedron multiplication, ⊗ stands for the quaternion multiplication, R for the space of
real numbers, H for the space of quaternions, D for the space of Dihedrons, C for the complex
numbers, Re for the real part of a complex number, <> for componentwise multi-linear dot
product e.g., < a, b, c >:=

∑
k akbkck, conv for the convolution operator, φ(o) for the complex

conjugate of φ(o), q is the length of embedding vectors, and ∥·∥2 for the L2 norm.

Approach Scoring function Vector space

T
K

G
E T-TRANSE −∥(φ(s) + φ(p) + φ(t))− φ(o)∥2 φ(s), φ(p), φ(o), φ(t) ∈ Rq

T-COMPLEX Re
(
< φ(s), φ(p), φ(t), φ(o) >

)
φ(s), φ(p), φ(t), φ(o) ∈ Cq

T-DYHE −∥φ(s) ∗ φ(p)1,2 + φ(t)− φ(o)∥2 φ(s), φ(p)1,2, φ(t), φ(o) ∈ Dq

K
G

E

TRANSE ∥(φ(s) + φ(p))− φ(o)∥2 φ(s), φ(p), φ(o) ∈ Rq

COMPLEX Re
(
< φ(s), φ(p), φ(o) >

)
φ(s), φ(p), φ(o) ∈ Cq

QMULT φ(s)⊗ φ(p) · φ(o) φ(s), φ(p), φ(o) ∈ Hq

CONEX Re(⟨conv(φ(s), φ(p)), φ(s), φ(p), φ(o)⟩) φ(s), φ(p), φ(o) ∈ Cq

consists of a subject (s), a predicate (p), an object (o), and a time point (t). E is the set
of all RDF resource IRIs (Internationalized Resource Identifier), P ⊆ E is the set of all
RDF predicates, L is the set of all literals, B is the set of all blank nodes, and T is the
set of all time points [52,36].

In this study, we treat each year as a single point in time. The time-point prediction
is defined as follows:

Definition 3 (Time-point prediction). Given an assertion (s, p, o), the task of time-
point prediction is to predict the time-point t to form a correct quadruple (s, p, o, t),
where t is a specific point in time that represents the occurrence of a predicate p with
respect to s and o [36].

In our running example, a time-point prediction algorithm should predict 2002 for the
assertion (:Ronaldo, :runningContractSigned, :SCP).

Definition 4 (Temporal Knowledge Graph Embeddings (TKGE)). A TKGE embed-
ding function φ maps a T G to a continuous vector space. Given a quadruple (s, p, o, t),
φ(s), φ(p), φ(o), and φ(t) stand for the embedding of the subject, predicate, object,
and time point, respectively [28].

Different knowledge graph embedding (KGE) and temporal knowledge graph embedding
-based approaches use different scoring functions to compute embeddings [55]. The
approaches considered in this paper are shown in Table 1.

3 Related Work

The research covered in this paper relates to two key areas of study: fact checking and
time-point prediction of assertions in KGs. The most recent methods in each area are
briefly described below, along with their limitations.
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3.1 Fact checking

The goal of fact checking is to determine which subset of a given set of assertions
from a KG may be trusted [40]. Fact-checking approaches can broadly be divided into
three categories: those that utilize unstructured textual sources [51,19], those that utilize
structured information sources [52,50,23], and those that are hybrid and use both [42].

In the first category, approaches validate a given assertion by searching evidence
in a reference text corpus. There are two examples of this category: FactCheck [51]
and DeFacto [19]. Both approaches are based on RDF verbalization techniques to find
textual excerpts that can be used as evidence for the stated assertion. Both approaches
compute a vector representation of the texts they retrieve as evidence based on a set of
manually created features.

In the second category, there are three sub-categories of approaches: 1. path-based,
2. rule-based, and 3. embedding-based. By automatically computing short paths from
the subject of the assertion to its object inside the reference KG, path-based approaches
seek to validate the input assertion. The input assertion is then scored using these paths.
Most path-based approaches, like COPAAL [52], Knowledge stream [46], PRA [18],
SFE [17], and KG-Miner [45], filter out meaningful paths using RDF semantics (e.g.,
class subsumption hierarchy, domain and range information). However, the T-Box of
several KGs provides a limited number of RDFS statements. Furthermore, no short paths
may be found within the reference KG, although the assertion is correct [52]. In these
situations, path-based approaches fall short of accurately predicting whether the provided
assertion is true. Rule-based approaches such as KV-Rule [23], AMIE [15,14,29], OP [7],
and RuDiK [38] extract association rules from KGs to perform the fact-checking task.
These approaches are constrained by the knowledge found in the KG, and mining
rules from huge KGs can be a long and tedious process (e.g., OP takes ≥ 45 hours
on DBpedia [29]). Embedding-based approaches express the input KG in a continuous
high-dimensional vector space via a mapping function [21,5,31,10,54,47]. For example,
Esther [47] computes likely paths between resources using compositional embeddings.
By developing a KG embedding model and learning a scoring function, the veracity of
these statements is computed. In general, the information included in the continuous
representation of the KG is the fundamental constraint on embedding-based techniques.
Ergo, when used with large-scale KGs, these approaches have limitations in terms of
both their scalability and accuracy in fact-checking scenarios.

The third category is more pertinent to the work presented herein. To the best of
our knowledge, the only state-of-the-art hybrid approach that takes full advantage of
the variety of available fact-checking approach categories in an ensemble learning
environment is called HybridFC [42]. By integrating the aforementioned categories of
approaches, HybridFC seeks to address the issues of: 1. manual feature engineering in
text-based approaches, 2. circumstances when paths between subjects and objects are not
available to path-based approaches, and 3. the poor performance of pure KG-embedding-
based approaches. However, HybridFC does not use time information along with the
assertions in a TKG. In comparison, TEMPORALFC overcomes this limitation.
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3.2 Time-point prediction

Knowledge Graphs (KGs) with an added temporal component are the focus of Temporal
Knowledge Graph Embedding (TKGE) models. Quadruples are created from a triple-
based representation. The majority of the early TKGE models were constructed on top of
KGEs that already existed. One of the first TKGEs to project the subject, predicate, and
object embeddings to a time space is the HyTE [8] model. HyTE uses TRANSE on the
projected embeddings for the final scoring of the newly predicted facts. T-TRANSE [30]
and TA-TRANSE [16] are two further TKGEs that have been proposed as expansions
of TRANSE. The ConT model, which is an extension of the Tucker [3] KGE, is the
other cutting-edge approach among TKGEs. For the encoding of TKGs, a number of
adaptations to DistMult [58] have also been proposed, including TDistMult [33] and
TA-DistMult [16]. Recurrent neural networks (RNNs) are the foundation of these models,
and they capture the entity embeddings for the subject and object entities. Another RNN-
based TKGE called RE-NET uses unique patterns from historical data between entities
to capture pair-wise knowledge in the form of (subject, predicate) or (object, predicate)
pairs [22]. The main difficulty with these models is that they carry over the flaws of the
base models upon which they are built. For instance, the TKGEs that were constructed
on top of TRANSE have problems encoding relational patterns. Recently, the TeRo
model [57] was developed to address these issues with the pre-existing TKGEs regarding
the inference of relational patterns. TeRo partially overcomes some of the limitations of
other models; however, it does not focus on time-point prediction in TKGEs. Instead,
it uses the time dimension solely for a better relation prediction. The T-COMPLEX
model [6] is the temporal iteration of the COMPLEX-N3 model, which achieves better
results in the relation prediction task compared with the previous approaches. For
learning and predicting time-points, the DYHE embedding model uses dihedron algebra.
Dihedron algebra is a rich 4D algebra of hyper-complex spaces. To the best of our
knowledge, DYHE is the only approach for which the authors report the results of the
time-point prediction task.

Our proposed approach performs both tasks—fact checking and time-point prediction—
for a given assertion. To the best of our knowledge, Temporal-DeFacto [19] is the only
state-of-the-art approach that covers both tasks as well.

4 Methodology

We propose TEMPORALFC, an approach that addresses the fact-checking and time-
point prediction tasks. It takes the quadruple of a TKG as input and comprises three
components as depicted in Figure 2. First, a pre-trained TKGE model is used to gen-
erate TKGE vectors of the input quadruple. Second, a fact-checking component
classifies the (s, p, o) part of the quadruple as true or false. We designed this fact-
checking component as an extension of HybridFC and, in contrast to the related work,
our component takes all 4 TKGE vectors from the first component into account. If an
assertion is classified as true, the (s, p, o) TKGE vectors of the input quadruple are used
as input for the third time-point prediction component. The time-point
prediction component comprises a neural network, which predicts the year in which
the given assertion should be true. Our ensemble of the two latter components is in line
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with the task definition of Temporal-DeFacto [19], i.e., our approach checks whether the
assertion is true at any point in time and then performs the time-point prediction task for
the given assertion. We describe all these components in more detail in the following.

Fact checking

TrueFalse

TKGE model

Time-point prediction

Year
Prediction

tp

p os tc

(tc) (s) (o)(p)

Linear layer

Dropout

BatchNorm1d

Linear layer

Neural Network

Dropout

Fig. 2: Left: Overview of the architecture of TEMPORALFC. Right: A multi-layer perceptron
module (ϑi) that is used in the fact-checking and the time-point prediction components of TEMPO-
RALFC.

4.1 TKGE model

We use pre-trained temporal embedding vectors, which are generated from a given
TKGE model, in our approach. Given a quadruple (s, p, o, t), φ(s), φ(o), φ(p),
and φ(t) stand for the embedding of the subject, predicate, object, and time point,
respectively. Initially, we form an embedding vector for a given quadruple (s, p, o, t)
by concatenating the embedding of its first three elements and defining the embedding
mapping function φ(s,p,o) for assertions (s, p, o) as follows [42]:

φ(s, p, o) = φ(s)⊕ φ(p)⊕ φ(o) , (1)

where ⊕ stands for the concatenation of vectors. φ(s,p,o) is used in both of the
following components, while the time embedding vector φ(t) is only used in the
fact-checking component.

From our running example, given (:Ronaldo, :runningContractSigned,
:SCP, 2002) as input quadruple, we first gather the embedding of each compo-
nent using a pre-trained TKGE model. In the next step, we transform the embed-
dings of φ(:Ronaldo), φ(:runningContractSigned), and φ(:SCP) into a con-
catenated embedding vector φ(:Ronaldo,:runningContractSigned,:SCP),
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which is the input to both the time-point-prediction and the fact-checking
components. The fact-checking component utilizes φ(2002) as an additional in-
put.

4.2 Fact checking

Our fact-checking component addresses the fact-checking task according to Definition 1.
It relies on a modified architecture of the HybridFC approach [42], which is the current
state-of-the-art algorithm for the fact-checking task. HybridFC takes a triple (s, p, o) as
input and retrieves three different types of evidence—embeddings-, text-, and G-based
evidence. While the embedding-based evidence comprises a representation of the input
assertion in the knowledge graph, the textual evidence is gathered from a reference
corpus. The search for textual evidence transforms the given assertion into a search
query and extracts those pieces of text from the retrieved documents that contain all
terms of the search query. The pieces of text are sorted in descending order based on the
PageRank of their respective document. Then, the top-k pieces of text are selected and
transformed into embedding vectors using a pre-trained sentence embedding model. The
result of these evidence retrieval steps are:

1. φ(s,p,o),
2. a vector φℵ comprising the concatenated embedding vectors of the top-k evidence

sentences, and
3. the veracity score ζ of the input assertion from a path-based fact-checking algorithm.

From our running example, φ(:Ronaldo,:runningContractSigned,:SCP)
is the embedding-based evidence retrieval output. An example for a textual evidence
could be “Ronaldo began his senior career with Sporting CP (SCP)” retrieved from
the reference corpus as one of the outputs for the given triple and transformed into an
embedding vector. This vector is concatenated with the embedding vectors of other
pieces of textual evidence to form φℵ. The G-based evidence retrieval utilizes an existing
path-based approach. Such an approach searches for paths between :Ronaldo and
:SCP in the reference G and utilizes them to calculate a single veracity score ζ. For
example, COPAAL [52] returns a veracity score of 0.69 for the given triple based on
DBpedia as reference graph.

Furthermore, HybridFC contains 3 multi-layer perceptron modules (ϑ1, ϑ2 and, ϑ3).
Each of the three multi-layer perceptron modules (ϑi) is defined as follows for an input
vector x:

ϑi = W5,i ×D(ReLU(W3,i × (BN(W1,i × x)))) , (2)

where Wj,i is the weight matrix of an affine transformation in the j-th layer of the multi-
layer perceptron, ReLU is an activation function, D stands for a Dropout layer [56], ×
represents the matrix multiplication, and BN represents the Batch Normalization [20].
The Batch Normalization and Dropout layers are defined as follows.

Given x′ as input, the batch normalization is formally defined as:

BN(x′) = β + γ
x′ − E [x′]√

Var [x′]
, (3)
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where, E [x′] and Var [x′] are the expected value and variance of x′, respectively. β and
γ are weight vectors, which are learned during the training process via backpropagation
to increase the accuracy [20].

Given x as input to the Dropout layer D, the elements of the layer’s output vector x̄
are computed as:

x̄i = δixi , (4)

where each δi is sampled from a Bernoulli distribution with parameter r, i.e., δ is 1 with
probability r, and 0 otherwise.

In our approach, we add a fourth input vector that comprises the embedding vectors
of a pre-trained TKGE model of the given quadruple. After adding the time embeddings
φ(t), the resultant equation of the final neural network component of HybridFC is as
follows:

ω = σ
(
wT

σ ϑ3 (ϑ1(φℵ)⊕ ϑ2(φ(s, p, o)⊕ ζ ⊕ φ(t)))
)
, (5)

where ω is the final veracity score of our fact-checking part, ⊕ stands for the concatena-
tion of vectors, and wσ is a weight vector that is multiplied with the output vector of the
third module ϑ3. For the given quadruple from our running example, we input φ(2002)
as the fourth input, and the fact-checking component was able to correctly classify it by
producing the final veracity score of 0.95.

4.3 Time-point prediction

The time-point prediction component predicts the time-point in a certain range of years
to form a correct quadruple (s, p, o, t) from the given assertion (s, p, o). The output
concatenated vector φ(s,p,o) of the first component is fed as input to a multi-layer
perceptron. This multi-layer perceptron consists of a Linear Layer, a Dropout layer, a
Batch Normalization layer, a second Dropout layer, and a final Linear layer. It can be
formalized as follows:

γ(s, p, o) = W5 ×D(BN(D(W1 × φ(s, p, o)))) . (6)

γ(s, p, o) is a vector of size n, where n is the number of years in the targeted range of
years. This vector is normalized to transform its values into probabilities and the vector
into a distribution. The year with the highest predicted probability is returned as the
predicted year and is the final output for the time-point prediction task. In our running
example, for the given assertion (:Ronaldo, :runningContractSigned, :SCP),
our time-prediction component predicts the correct year as 2002.

5 Experiments

Our evaluation has two objectives: we want to measure TEMPORALFC’s abilities to a)
discern between true and false assertions, and b) identify the appropriate point in time
for a given, true assertion. In the following, we describe the experiment designs.
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Fig. 3: The distribution of quadruples over years for the training sets of DBpedia124k (left) and
Yago3k (right).

Table 2: Overview of updated DBpedia124k and Yago3k datasets used in experiments; the abbre-
viations are: Q/Quadruples, Ent./Entities, Rel./Relations, Tim./Time stamps, |.|/count.

Dataset |Train-Q| |Valid-Q| |Test-Q| |Ent.| |Rel.| |Tim.|

DBpedia124k 145k 44k 44k 124k 7 123
Yago3k 7k 2k 2k 3k 8 195

5.1 Datasets

We reuse two TKGs, DBpedia124k and Yago3k, from [36]. Due to the small size and
incorrect IRIs in the original datasets, we update it by running the queries used to
generate these datasets again on recent versions of the DBpedia and Yago datasets. Due
to the Temporal-DeFacto requirement and, consequently, to ensure a fair comparison,
we filtered all quadruples and kept those with year information between 1900 and 2022.
We dubbed the resultant dataset with DBpedia124k and Yago3k due to the number of
entities present in them. The statistics of the resultant datasets are shown in Table 2.
Furthermore, we do not use the FactBench dataset [19] because it is based on older
versions of DBpedia (i.e., 2013-10) and Freebase (i.e., 2013-08), which contain many
entities (650/1813) for which T G model failed to produce embedding vectors.5

Our fact-checking component makes use of a reference corpus. We created this
corpus by extracting the plain text snippets from all English Wikipedia articles and
loading them into an Elasticsearch instance.6 We use the English Wikipedia dump
from March 7th, 2022. For the Elasticsearch index, we use a cluster of 3 nodes with a
combined storage of 1 TB and 32 GB RAM per node. Figure 3 shows the frequency of
time points for the DBpedia124k and Yago3k train sets.

The process of generating negative examples for the fact-checking task requires
more effort than generating positive examples [19]. For the purpose of examining the

5 Fair comparison could not be possible with missing entities, which constitute many assertions.
6 https://www.elastic.co/

https://www.elastic.co/
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contribution of the assertion (s, p, o) part of the quadruple and the time-point (t) part
of the quadruple in the overall result, we generated two sets of negative examples: 1. The
assertion-based negative example set is generated using the same strategy as defined
in [28]. 2. The time-point-based negative example set is generated by randomly replacing
time points as suggested in [19].

5.2 Evaluation metrics

We use common measures to evaluate the performance of the different approaches on the
two tasks. When evaluating the fact-checking task, we rely on the area under the receiver
operator characteristic curve (AUROC) [23,52,51]. We use the GERBIL framework to
calculate this score [41,37].

The time prediction task is based on queries of the form (s, p, o, ?), which are
generated by removing the correct time point t from a set of test quadruples. The
evaluated systems predict scores for all years that we have within our dataset. We rank
the years according to the predicted scores and use the MRR, Hits@1, and Hits@3 to
determine the ranking quality. In addition, we use the accuracy metric of multi-class
classification to measure system performance in cases where only the highest-ranked
year is considered.

5.3 Setup Details and Reproducibility

TEMPORALFC is designed to work with any pre-trained TKGE model to generate
embedding vectors. However, throughout our experiments, we solely use pre-trained
embedding models because training large embedding models has a high footprint in
terms of cost, energy, and CO2 emissions [48]. Within our evaluation, we use a pre-
trained T-DYHE model, since this approach has been reported to outperform other
approaches for the time-point prediction task [36]. The size of each embedding vector
is set to q = 100. The range of years is between 1900 and 2022.7 The loss functions
for training our multi-layer perceptron are the Binary Cross Entropy Loss for the fact-
checking task and the Cross Entropy Loss for the time-point prediction task. We chose the
Binary Cross Entropy Loss because it is widely used for binary classification and is well-
suited for models with a sigmoid activation function in the output layer [42,47,52]. We
chose the Cross Entropy Loss for analogous reasons on multi-class classification [8,33].
With a batch size equal to one third of the training data, we set the maximum number
of epochs to 1000. We calculate the validation loss after every 10th epoch and stop the
training earlier if the loss is not reduced for 50 epochs to avoid overfitting.8 Throughout
our experiments, we use Adam [24] optimizer. For the fact-checking component, we use
a pre-trained SBert model for sentence vector generation.9 Furthermore, we set k = 3

7 https://doi.org/10.5281/zenodo.7913193
8 We report the parameters that were used to achieve the results reported in this study. Nevertheless,

the user has the option to modify these parameters to suit her personal preferences. Visit the
project home page to get the complete list of parameters.

9 Among all the available pre-training models from the SBert webpage (https://www.sbert.
net/docs/pretrained_models.html), we select nq-distilbert-base-v1 for
our approach (as suggested in [42]).

https://doi.org/10.5281/zenodo.7913193
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
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in the sentence selection module. SBert generates sentence embedding vectors of 768,
which leads to |φℵ| = (3× 768) + 3 = 2307.10

All experiments are executed on a computer with 32 CPU cores, 128 GB of RAM,
and an NVIDIA GeForce RTX 3090. For the sake of reproducibility, we uploaded scripts
for hyperparameter optimization, training, and evaluation to our project homepage.

5.4 Competing approaches

We compare our approach TEMPORALFC with HybridFC [42], FactCheck [51], Temporal-
DeFacto [19], COPAAL [52], and KV-Rule [23], which are the state-of-the-art ap-
proaches in the hybrid, text-, path-, and rule-based categories of the fact-checking task.
We also compare our results to the four KG embedding-based approaches TRANSE,
CONEX, COMPLEX, and QMULT, which show the most effective performance for the
fact-checking tasks [42].

For the time-point prediction task, we compare our approach with Temporal-DeFacto
and the top-performing temporal embedding-based approaches: T-DYHE [36], T-TRANSE
[30], and T-COMPLEX [28]. For the embedding-based approaches, we use the parameter
configuration reported in [36].

6 Results and Discussion

In this section, we discuss the results we obtained in our evaluation. All results along with
the scripts to reproduce the results are also available at the project homepage. First, we
evaluate TEMPORALFC on the fact-checking task. Thereafter, we compare and evaluate
the time-point prediction task with the state-of-the-art approaches.

6.1 Fact checking

Tables 3 and 4 show the results for the fact-checking task on the training and test data,
respectively. In comparison to other approaches, hybrid approaches perform best.11

10 We ran experiments with other values of k, i.e., 1, 2, 3, and 5 and found that k = 3 worked
best for our approach. We cannot present comprehensive results in this paper due to space
limitations. However, they can be found in our extended, green open-access version of the paper.

11 Our results are also available on the GERBIL benchmarking platform [43]:
1. Using assertion-based negative examples:

http://w3id.org/gerbil/kbc/experiment?id=202301180129,
http://w3id.org/gerbil/kbc/experiment?id=202301180056,
http://w3id.org/gerbil/kbc/experiment?id=202301180123, and
http://w3id.org/gerbil/kbc/experiment?id=202301180125.

2. Using time-based negative examples:
http://w3id.org/gerbil/kbc/experiment?id=202305020014,
http://w3id.org/gerbil/kbc/experiment?id=202305020015,
http://w3id.org/gerbil/kbc/experiment?id=202305020012, and
http://w3id.org/gerbil/kbc/experiment?id=202305020013.

http://w3id.org/gerbil/kbc/experiment?id=202301180129
http://w3id.org/gerbil/kbc/experiment?id=202301180056
http://w3id.org/gerbil/kbc/experiment?id=202301180123
http://w3id.org/gerbil/kbc/experiment?id=202301180125
http://w3id.org/gerbil/kbc/experiment?id=202305020014
http://w3id.org/gerbil/kbc/experiment?id=202305020015
http://w3id.org/gerbil/kbc/experiment?id=202305020012
http://w3id.org/gerbil/kbc/experiment?id=202305020013
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Table 3: Area under the curve (AUROC) score on DBpedia124k and Yago3k train sets; the abbre-
viations are: Txt/Text-based approaches, E./Example, Neg./negative, Path/Path-based approaches,
H/Hybrid approaches, Gen./Generation, Avg./Average. Best performances are bold, second-best
are underlined.

Assertion-based Neg. E. Gen. Time-based Neg. E. Gen.

DBpedia124k Yago3k Avg. DBpedia124k Yago3k Avg.

T
xt FactCheck [51] 0.69 0.66 0.67 0.55 0.53 0.54

Temporal-DeFacto [19] 0.67 0.64 0.65 0.53 0.51 0.52

K
G

-e
m

b TRANSE [5] 0.71 0.78 0.75 0.50 0.50 0.50
CONEX [10] 0.80 0.81 0.80 0.50 0.50 0.50
COMPLEX [54] 0.72 0.70 0.71 0.50 0.50 0.50
QMULT [9] 0.73 0.77 0.75 0.50 0.50 0.50

H

HybridFC [42] 0.92 0.94 0.93 0.50 0.50 0.50
TEMPORALFC 0.93 0.97 0.95 0.68 0.65 0.66

Pa
th KV-Rule [23] 0.58 0.61 0.59 0.50 0.50 0.50

COPAAL [52] 0.65 0.67 0.66 0.50 0.50 0.50

This is expected since hybrid approaches combine aspects of different categories of
approaches. Among both of the hybrid approaches, TEMPORALFC performs slightly
better (Avg. 0.02−0.03 on AUROC scores) than HybridFC on the DBpedia124k dataset,
when using assertion-based negative examples in our dataset.12 A potential reason for
this small improvement could be that the additional temporal embeddings add more
context to the data and, thus, the performance of the model increases.

When using time-based negative quadruples, TEMPORALFC outperforms other
approaches by at least 0.12 AUROC on the train set and 0.13 AUROC on the test set.
This difference is also due to the fact that most other approaches do not consider the
temporal aspect of quadruples. Therefore, their classifiers do not consider temporal
information during the training phase. We use these negative examples to evaluate the
potential performance that the fact-checking component would have if the fact-checking
task would take time into account. We modified the behavior of FactCheck and Defacto
to include the temporal aspect as well, by including time-points in their search queries
to the reference corpus. However, our results in Tables 3 and 4 show that the benefit of
using the temporal aspect is not pertinent for FactCheck and Defacto.

During the training phase, we observe that our approach needs more epochs (e.g.,
989 for DBpedia124k) than the comparable non-temporal approach HybridFC (479
epochs for DBpedia124k). This is most probably caused by the larger input vectors of
the temporal embeddings.

The text-based approaches rely on the reference corpus as background knowledge. A
look into the details of their output reveals that these approaches failed to find relevant ev-
idence for 70% of the assertions, resulting in lower performance than hybrid or KG-based
approaches for assertion-based negative sampling-based datasets. KG-embedding-based

12 We use a Wilcoxon signed rank test with a significance threshold α = 0.05.
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Table 4: Area under the curve (AUROC) score on DBpedia124k and Yago3k test sets; the abbrevi-
ations are: Txt/Text-based approaches, E./Example, Neg./negative, Path/Path-based approaches,
H/Hybrid approaches, Gen./Generation, Avg./Average. Best performances are bold, second-best
are underlined.

Assertion-based Neg. E. Gen. Time-based Neg. E. Gen.

DBpedia124k Yago3k Avg. DBpedia124k Yago3k Avg.

T
xt FactCheck [51] 0.69 0.66 0.67 0.52 0.53 0.52

Temporal-DeFacto [19] 0.64 0.66 0.65 0.51 0.51 0.51

K
G

-e
m

b TRANSE [5] 0.74 0.74 0.74 0.50 0.50 0.50
CONEX [10] 0.78 0.74 0.76 0.50 0.50 0.50
COMPLEX [54] 0.74 0.70 0.72 0.50 0.50 0.50
QMULT [9] 0.71 0.73 0.72 0.50 0.50 0.50

H

HybridFC [42] 0.88 0.92 0.90 0.50 0.50 0.50
TEMPORALFC 0.91 0.92 0.91 0.65 0.65 0.65

Pa
th KV-Rule [23] 0.54 0.56 0.55 0.50 0.50 0.50

COPAAL [52] 0.65 0.69 0.67 0.50 0.50 0.50

approaches achieve relatively better performance than text- and path-based approaches.
In fact, CONEX is the third best performing system, followed by QMULT, TRANSE, and
COMPLEX. Our results also show that KV-Rule performs worse among all competing
approaches. This behavior of KV-Rule could be due to the fact that the pre-generated
rule set is biased towards certain properties of the DBpedia dataset. Hence, for unknown
properties the performance degrades. After the KV-Rule, COPAAL has the second-worst
AUROC scores. It might be because COPAAL fails to find paths for the properties of
our dataset and performs better on other properties [42]. These experimental findings
imply that our strategy effectively utilizes the performance variability of the approaches
it comprises. It appears to rely on KG-embedding-based approach’s strong performance
in particular. However, it also has the ability to supplement KG-embedding-based ap-
proach’s predictions with those of other categories of approaches, in cases in which
KG-embedding-based approach does not perform well.

6.2 Time-point prediction

Table 5 shows the results of the time-point prediction experiment. The results show
that TEMPORALFC significantly outperforms all competing approaches in MRR by at
least 0.27 and 0.25, Accuracy by at least 0.22 and 0.23, and Hit@1 by at least 0.48
and 0.54 on the DBpedia124k and Yago3k datasets, respectively. Temporal-DeFacto,
TEMPORALFC’s closest competitor, performs worst in terms of MRR and Accuracy
as compared to all other systems. A closer look at the results reveals two main reasons
for the low performance of Temporal-DeFacto. First, it fails to extract pieces of evi-
dence for around 30 percent of quadruples (43.5k/145k on DBpedia124k and 2k/7k
on Yago3k). Second, its manual feature engineering seems to be optimized for the
FactBench dataset [19] proposed by the authors. T-DYHE is the second best performing
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Table 5: Results for the time-point prediction task on the DBpedia124k and Yago3k test datasets.

MRR Accuracy Hits@1 Hits@3

D
B

pe
di

a1
24

k Temporal-DeFacto [19] 0.16 0.10 0.17 0.19
T-DYHE [36] 0.43 0.44 0.14 0.62
T-TRANSE [30] 0.26 0.25 0.08 0.10
T-COMPLEX [28] 0.24 0.21 0.13 0.17
TEMPORALFC 0.70 0.66 0.65 0.71

Ya
go

3k

Temporal-DeFacto [19] 0.11 0.05 0.01 0.12
T-DYHE [36] 0.58 0.56 0.24 0.90
T-TRANSE [30] 0.24 0.25 0.02 0.13
T-COMPLEX [28] 0.21 0.20 0.17 0.19
TEMPORALFC 0.83 0.79 0.78 0.86

embedding-based approach after TEMPORALFC, scoring MRR of 0.43 and 0.58 on
DBpedia124k and Yago3k datasets respectively. On the Yago3k dataset, it performs
better than TEMPORALFC on Hit@3 scores.

7 Conclusion

In this study, we propose TEMPORALFC—a hybrid method for temporal fact-checking
for knowledge graphs. The goal of TEMPORALFC is to address two key issues: 1. most
fact checking approaches do not take the volatility of some assertions into account and
2. those that do only achieve a low performance in the time-point prediction task. In
both fact-checking and time-prediction tasks, we evaluate TEMPORALFC against the
current state of the art. Our findings on two datasets imply that our TEMPORALFC
approach can outperform competing approaches in both fact-checking and time-point
prediction tasks. In particular, on the fact-checking task TEMPORALFC achieves an
Area Under the Receiver Operating Characteristic curve that is 0.13 and 0.15 higher than
the best competing approaches for volatile assertions, while it achieves the same or an
even slightly superior performance as the current state-of-the-art approach HybridFC for
non-volatile assertions. In the time-point prediction task, TEMPORALFC outperforms all
other approaches in our evaluation by at least 0.25 to 0.27 Mean Reciprocal Rank.

In future work, we will enhance TEMPORALFC to support time-period-based as-
sertions in T G. In addition, we plan to extend the fact-checking component to include
rule-based approaches.

Supplemental Material Statement

– The source code of TEMPORALFC, the scripts to recreate the full experimental
setup, and the required libraries can be found on GitHub.13

13 Source code: https://github.com/dice-group/TemporalFC

https://github.com/dice-group/TemporalFC
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– For the fact-checking task, the datasets used in this paper and the output generated
by text-based and path-based approaches on these datasets are available at Zenodo:
https://doi.org/10.5281/zenodo.7913193.

– For the Time-point prediction task, the datasets are also available at Zenodo: https:
//doi.org/10.5281/zenodo.7913222.

– Pre-trained embeddings for these datasets are also available at Zenodo: https:
//doi.org/10.5281/zenodo.7913193.

– Prediction files and AUROC graphs are also available at Zenodo: https://doi.
org/10.5281/zenodo.7913193.
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